The tool min returns the minimum value along a given axis.
import numpy
my_array = numpy.array([[2, 5],
[3, 7],
[1, 3],
[4, 0]])
print numpy.min(my_array, axis = 0) #Output : [1 0]
print numpy.min(my_array, axis = 1) #Output : [2 3 1 0]
print numpy.min(my_array, axis = None) #Output : 0
print numpy.min(my_array) #Output : 0
By default, the axis value is None
. Therefore, it finds the minimum over all the dimensions of the input array.
The tool max returns the maximum value along a given axis.
import numpy
my_array = numpy.array([[2, 5],
[3, 7],
[1, 3],
[4, 0]])
print numpy.max(my_array, axis = 0) #Output : [4 7]
print numpy.max(my_array, axis = 1) #Output : [5 7 3 4]
print numpy.max(my_array, axis = None) #Output : 7
print numpy.max(my_array) #Output : 7
By default, the axis value is None
. Therefore, it finds the maximum over all the dimensions of the input array.
Task
You are given a 2-D array with dimensions X.
Your task is to perform the min function over axis and then find the max of that.
Input Format
The first line of input contains the space separated values of and .
The next lines contains space separated integers.
Output Format
Compute the min along axis and then print the max of that result.
Sample Input
4 2
2 5
3 7
1 3
4 0
Sample Output
3
Explanation
The min along axis =
The max of = 3
Solution
Source : HackerRank
No comments:
Post a Comment